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Introduction ing an added 550 cu f t  of shielded volume f o r  t he  
~~ 

In  order t o  evaluate the  ro le  of e l e c t r i c  pro- 
pulsion systems f o r  space missions, it w i l l  prob- 
ably be necessary t o  determine t h e i r  performance ca- 
p a b i l i t i e s  f o r  many space missions and then compare 
these r e s u l t s  with s imi la r  analyses f o r  competing 

sidered, it would seem reasonable t o  assume t h a t  
t he  higher energy missions would favor e l e c t r i c  pro- 
pulsion systems with t h e i r  high spec i f ic  impulses. 
Unfortunately, one of t he  most i n t e re s t ing  planets,  

a l l  t he  planetary missions. For t h i s  reason, it 
would not be surpr i s ing  i f  e l e c t r i c  propulsion sys- 
tems d id  not show outstanding advantages f o r  t h i s  
pa r t i cu la r  mission. On the  other hand, there  are 
many o ther  fac tors ,  i n  addition t o  energy l eve l s  and 
spec i f i c  impulses, t h a t  must be evaluated before 
such a conclusion can be drawn. 

c 

systems. Of the  various missions t h a t  may be con- 

dc 
a) 
m 
N Mars, has almost the  lowest energy requirement of 
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Similar t o  other analyses of t h i s  type,’ it i s  
necessary t o  consider a number of d i f fe ren t  mission 
p r o f i l e  variations.  
tems, few such extensive analyses have been made be- 
cause of t he  d i f f i c u l t  t r a j ec to ry  calculations,  usu- 
a l l y  requi r ing  the use of the calculus of var ia t ions  
and numerical integration. Recent work by Zola‘ has 
produced a method of making reasonable approxima- 
t i o n s  i n  t h e  t r a j ec to ry  a rea  with 2O:l increases i n  
computing speed. This advance allowed a r e l a t i v e l y  
broad preliminary inves t iga t ion  t o  be made i n  the 
hope t h a t  it w i l l  point out new and in t e re s t ing  
a reas  f o r  fu tu re  study. 

For e l e c t r i c  propulsion sys- 

I n i t i a l  gross weight i n  Earth o r b i t  required 
f o r  a seven man crew has been chosen a s  the  c r i t e -  
r ion  t o  be minimized. These weight estimates w i l l  
then be presented a s  functions of mission time f o r  
a @-day exploration time a t  Mars. No attempt w i l l  
be made t o  ca lcu la te  t he  r e l i a b i l i t y  associated with 
each mission, but some e f f o r t  w i l l  be made t o  point 
out various areas of r i sk .  Also, no attempt has 
been made t o  specify a departure date. Instead, 
Earth and Mars are  assumed t o  be i n  c i r cu la r  o r b i t s  
about t he  sun, r e su l t i ng  i n  f u e l  consumption t h a t  i s  
intermediate r e l a t i v e  t o  the  bes t  and worst launch 
dates.  

Vehicle Design 

A conceptual vehicle layout i s  shown i n  f ig-  
ure 1 where the  usual attempt i s  made t o  keep the 
crew cabin a t  a distance from the  reactor.  Prelim- 
inary  estimates of t h e  required separation d i s -  
tances ind ica t e  t h a t  about 300 f t  w i l l  be su f f i -  
c i en t  t o  br ing  the rad ia t ion  hazard from the  oper- 
a t i n g  r eac to r  down t o  a negl ig ib le  level .  

Figure 2 gives a more de t a i l ed  view of the crew 
cabin design showing how the  t o t a l  volume of  5600 
cu f t  (800 cu ft/man) i s  divided between the  l i v ing  
qua r t e r s  and the  heavily shielded so lar  f l a r e  shel- 
t e r  of 450 cu f t .  I n  t h i s  pa r t i cu la r  design, the  
cy l ind r i ca l  section protruding from the  f l o o r  may be 
moved up t o  the  c e i l i n g  of the  l i v ing  quar te rs  form- 

long duration s p i r a l s  through the Van Allen be l t s .  
A weight breakdown of a typ ica l  crew cabin design i s  
given i n  Table I. As indicated, t h i s  breakdown in- 
cludes estimates of the  l i fe -suppor t  requirement but 
does not include the  rad ia t ion  shielding, which i s  
supplied mainly by onboard propel lan ts  a s  discussed 
l a t e r .  

( N A S A  CR OR TMX OR A D  NUMBER) ICATEQORY) 
Mars Payload 

In  the  upper par t  of the  cabin ( f ig .  2 )  there  
i s  a storage area provided f o r  t he  Mars landing and 
exploration system and the  Earth reent ry  vehicle, i f  
needed. Weight estimates of t he  Mars landing system 
a re  given i n  Table 11. All the  vehicles shown s t a r t  
i n  a high c i r cu la r  o r b i t  about Mars (27 Mars r a d i i )  
and a l l  except the  tanker vehicle a re  sent d i r ec t ly  
t o  the  surface by using a combination of atmospheric 
and chemical-rocket braking. The tanker i s  sent t o  
a l o w  c i r cu la r  o r b i t  where it i s  joined l a t e r  by the 
manned landing vehicles f o r  re fue l ing  p r io r  t o  the  
t r ans fe r  back t o  the  main spacecraft  o rb i t .  
saves the propellant t h a t  would otherwise be needed 
t o  t ranspor t  the  tanker load from the  surface t o  the 
low o r b i t  but requi res  t h a t  the  crew perform an ex- 
tra rendezvous with the  tanker i n  the  low o rb i t .  

This 

Shielding 

A s  pointed out above, use has been made of pro- 
pe l l an t s  a s  a rad ia t ion  shield.  
t he  e l e c t r i c  rocket i s  assumed t o  be mercury. 
some cases, chemical propulsion i s  used ju s t  p r io r  
t o  atmospheric braking i n  order t o  l i m i t  entry 
speed. I n  t h i s  case, t he  propellant i s  assumed t o  
be B2H6 and OF2 and t o  have the  shielding proper t ies  
of water. Finally,  i n  those cases where a so l id  
sh ie ld  i s  used, it i s  assumed t o  be polyethylene and 
a l so  t o  have the  shielding proper t ies  of water. 

The propellant fo r  
I n  

The dose accumulated from the  Van Allen Belts 
w a s  determined by using references 3 t o  5 f o r  t he  
in tens i ty ,  spec t ra l  data, and ca lcu la t ion  methods, 
respectively.  The number of so la r  f l a r e s  encoun- 
t e r ed  was determined by the s t a t i s t i c a l  method of 
reference 1 b y  assuming one la rge  f l a r e  every 
4 years and one small f l a r e  each year. This gave 
the  frequencies shown i n  Table 111. The spec t ra l  
and in t ens i ty  da ta  f o r  t he  la rge  type of f l a r e  were 
taken from reference 6, and the  sniill f l a r e  was as- 
sumed t o  be half  as  in tense  as  the  la rge  f l a r e .  In 
placing the  f l a r e s ,  it has been pess imis t ica l ly  as- 
sumed t h a t  both a la rge  and a s m a l l  f l a r e  occur a t  
the  mission perihelion and t h a t  the  in t ens i ty  varies 
inversely with the square of the radius. Again the 
dose was computed by using the  method of reference 5, 
which includes the  e f f e c t s  of secondary neutron and 
proton production. Finally,  an unshieldable input 
of 0.65 rem/week was assumed t o  r e s u l t  from cosmic 
rays. 7 

In a l l  cases the crew was l imi ted  t o  a maximum 
instantaneous dose of 100 rem; however, it has a l so  
been assumed t h a t  some recovery occurs8 from the  ef-  
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Thrustor Performance and 

Weight Estimates 

For most of t h i s  paper, t he  th rus to r s  a r e  as- 
sumed t o  be of t he  constant-thrust  and spec i f ic -  
impulse type having the  performance shown i n  f ig -  
ure 3. These curves a re  based on recent experimen- 
t a l  data9 f o r  the  electron-bombardment thrus tor  but 
have been modified somewhat t o  allow f o r  some change 
i n  the  s t a t e  of the  a r t .  Figure 3(a) shows the  
lo s ses  (discharge only) a s  a function of t h a t  f rac-  
t i o n  of the propellant which i s  ionized. By opti-  

f igure  3 (b )  i s  determined. 

b 

s mizing t h i s  parameter, the  e f f ic iency  curve shown i n  

A simple estimate of t h rus to r  weight i s  made by 

The e x i t  a rea  i s  then estimated by using 
assuming a constant density of 300 kg/sq m of e x i t  
beam area.  
t he  charge- exchange- current -density l i m i t  a t  ionsl0 
imposed t o  provide adequate g r id  l i f e .  

Trajectory Methods 

A s  indicated previously, both Mars and Earth 
a r e  assumed t o  be i n  circular,  coplanar o r b i t s  about 
t h e  sun, Furthermore, t he  t o t a l  t r a j ec to ry  i s  
t r e a t e d  as  a s e r i e s  of two-body segments or phases. 
For the  planetocentric phases, an approximation 
technique s imi la r  t o  tha t  used i n  reference 11 has 
been employed. For the  he l iocent r ic  phases, the  
method of reference 2 i s  used i n  a l l  constant- 
t h r u s t  cases. This technique i s  e s sen t i a l ly  a- .. 
method of cor rec t ing  the  AV of an eas i ly  obtained 
high-thrust  so lu t ion  f o r  changes i n  th rus t  and spe- 
c i f i c  impulses. (The high-thrust  solution i s  com- 
puted by assuming t h a t  impulses occur at  the start 
and/or end of the  t r a j ec to ry  only. ) I n  t h i s  work, 
both per ihe l ion  radius and entry ve loc i t ies  a re  
needed i n  most cases. These were taken d i r ec t ly  
from t h e  reference high-thrust  solution and a re  not 
of the  same qua l i ty  as the  corrected AV's. Some 
l imi t ed  spot checking has been done which ind ica tes  
t h a t  t h e  rad ius  and en t ry  velocity values a re  always 
lower than those f o r  t rue  low-thrust calculations.  
This w i l l  t end  t o  give somewhat higher required 
sh ie ld  weights and s l i g h t l y  l a rge r  propellant loads 
required f o r  braking p r io r  t o  atmospheric entry, two 
t rends  which may tend t o  compensate f o r  each other. 

Nominal Mission P ro f i l e  

Af te r  some preliminary investigations,  t he  
standard or nominal mission p ro f i l e  shown i n  f ig-  
ure  4 has been selected.  Here, t h e  mission begins 

followed by a s p i r a l  escape maneuver and a constant 
t h r u s t  (with intermediate coasting) t r ans fe r  t o  the  
v i c i n i t y  of Mars. The vehicle then sp i r a l s  down t o  
~r - d - a  r a d i i  from which the  1aricEng i s  perfoxzed. 
Af te r  40 days have elapsed, a similar t r ans fe r  i s  
made back t o  Earth where the  vehicle s p i r a l s  in to  a 
te rmina l  c i r c u l a r  o r b i t  a t  3 Earth r ad i i ,  j u s t  be- 
yond t h e  inner  Van Allen be l t .  

. i n  a po lar  c i r c u l a r  o r b i t  a t  1.10 Earth r a d i i  and i s  

17 hr" 

A s  shown i n  figure 4, t he  mission perihelion 
occurs during the r e tu rn  t r i p  where the propellant 
supply on board i s  Low. Since a so la r  f l a r e  i s  as- 
sumed t o  occur a t  perihelion, t he  crew has l e s s  
p ro tec t ion  from the  propellant than i f  the perihe- 

linn ncciurred during t.he ni.i.t.hnimd t.ri p; For vari - 
able th rus t  systems, it has been found12 t h a t  the  
placement of t he  perihelion has no e f f ec t  on propel- 
l a n t  consumed. For the  constant-thrust  system used 
herein, there  i s  appreciable propellant saving as- 
sociated with re turn  t r i p  perihelion placement. 
This more than compensates f o r  the l o s s  of propel- 
l a n t  protection associated with placement on the  
outbound journey. Consequently, a l l  constant- 
t h rus t  p ro f i l e s  w i l l  use t h i s  fea ture  i n  the  remain- 
der of t h i s  paper. 

The gross weights required f o r  the  nominal 
p ro f i l e  described are.shovn i n  f igu re  5 a s  a func- 
t i o n  of mission time. From t h i s  f igure,  it can be 
seen t h a t  gross weights of about a mill ion pounds 
a re  possible, but only a t  mission times beyond about 
600 days. Shorter t r i p  times are possible, but the  
associated gross weights increase rapidly. 

Unmanned Belt  Traversal  

Early i n  t h i s  study, it became apparent t h a t  a 
la rge  shield-weight saving could be had a t  the  
longer mission times by avoiding a manned t r ave r sa l  
of the  inner Van Allen rad ia t ion  be l t .  This may be 
done by assuming tha t  the crew remains on Earth 
while the main vehicle t raverses  the b e l t s  unmanned. 
Later, t he  crew rendezvouses with the  main c r a f t  
beyond t h e  inner b e l t  via a high-thrust  t ransfer .  
The weight of the  addi t iona l  vehicle requires i s  
negl ig ib le  compared with the  main vehicle, so t h a t  
t he  major problem with t h i s  scheme i s  the  added 
operational complexity; however, as  indicated i n  
f igure  6, the  weight saving i s  so la rge  t h a t  it 
seems well  worth the added i n i t i a l  rendezvous. Also 
shown i n  t h i s  f igure  i s  the  time saved by not having 
men on board during the b e l t  t raversa l .  

For a l l  of the following mission prof i les ,  t h i s  
method of avoiding the inner rad ia t ion  b e l t  w i l l  be 
used and the time saved accounted for .  

Ef fec t  of Thrustor Performance 

Two fea tures  of the  assumed th rus to r  perform- 
ance tend t o  de t rac t  from mission capabi l i t i es .  
F i r s t ,  it may be possible at  some fu ture  time t o  
operate much c loser  t o  100 percent efficiency. Sec- 
ondly, it may a l so  become possible t o  gain fu r the r  
propellant saving by operation a t  variable th rus t  
and constant power.12 The r e l a t i v e  importance of 
these  separate e f f ec t s  i s  shown i n  f igure  7, where 
it should be noted t h a t  most of the weight reduc- 
t i ons  r e s u l t  from elimination of t h e  th rus to r  inef- 
f ic iency  and not from the  var iab le- thrus t  feature.  
It appears, therefore,  t h a t  s ign i f icant  fu ture  gains 
a re  possible through thrus tor  e f f ic iency  improve- 
ments, pa r t i cu la r ly  i n  terms of lowering the  mini- 
mum mission times possible with a given gross 
weight. 

Atmospheric Braking 

A recognized method f o r  reducing mission 
requirements i s  t o  introduce atmospheric braking at  
r e tu rn  t o  Earth. 
chemical- and nuclear-rocket systems, it may a l so  
be used with e l e c t r i c  systems i n  a var ie ty  of ways 
a s  indicated i n  figure 8. In  addition t o  the  case 
with no atmospheric braking (taken from f i g .  6 or 7 )  
t he  en t ry  ve loc i t i e s  o f  37,000 and 52,000 f t / s e c  a re  

AV 

Although commonly applied t o  



a l so  shown. These vel n r i t i e s  hare h e m  m a i i i t z h d  
by using e i the r  e l e c t r i c  or chemical (B2H6 plus OF2 
with I = 430 see) deceleration pr ior  t o  entry. In 
the case where e l e c t r i c  deceleration i s  assumed, 
the increase i n  entry speed reduces the  gross 
weight and s h i f t s  the  curves t o  the  l e f t .  I n  the 
case of chemical deceleration and atmospheric brak- 
ing, f a r  too much propellant i s  needed f o r  t he  
lower entry speed (not shown) t o  be of any service. 
For the  higher speed, however, the  chemical braking 
scheme i s  somewhat superior t o  the  a l l - e l e c t r i c  
scheme. It would appear, then, t h a t  there  i s  some 
entry speed f o r  which the  two methods a re  equiva- 
lent .  

b 

Although entry speeds higher than 52,000 
f t / s e c  a re  considered feas ib le ,13  the  l i m i t  chosen 
here i s  believed t o  be a reasonable compromise be- * tween increased performance and r isk,  and w i l l  be 
used, with chemical braking, f o r  t h e  r e s t  of t h i s  a3 

In 
a n d y  s i s. 

Two-Phase Missions 

I n  the  previous figures,  it was noted t h a t  
short-duration missions required high gross weights 
because of t he  high propellant requirement, which 
suggests sending ahead, on a separate t r i p ,  mate- 
r i a l  not needed by the  crew on the  outbound t r i p .  
By t h i s  procedure, pa r t  of the  nominal payload 
would be sent v i a  a more e f f i c i en t ,  long-duration 
t r a j ec to ry  r e su l t i ng  i n  l e s s  t o t a l  propellant re- 
quirement. This method should, therefore,  be most 
he lpfu l  f o r  the  short-duration t r i p s .  Two cases of 
t h i s  type a re  considered i n  f igure  9. I n  the  f i r s t  
case, only the  Mars payload and landing system is  
sent ahead on a 3ZQ-day t r ans fe r .  The weight of 
t he  f i r s t -phase  vehicle i s  computed by using the 
same spec i f i c  powerplant weight and bes t  t r a v e l  
angle possible f o r  the  350-day duration. The 
weights shown on the  ordinate a re  the  sum of the  
weights of both vehicles. I n  the  second and bes t  
case, t he  propellant f o r  t he  r e tu rn  t r i p  i s  added 
t o  the  previous f i r s t -phase  payload. 

The major e f f ec t  of t h i s  p ro f i l e  i s  t o  reduce 
gross weights mainly f o r  t he  shor te r  missions as  
pred ic ted  above. These gains a re  ra ther  small, 
however, and may not warrant t he  added r i s k  and 
complexity required. This i s  pa r t i cu la r ly  t rue  i n  
the  case where the r e tu rn  propellant i s  sent ahead. 

Ef fec t  of Specific Powerplant Mass 

In  order t o  place e l e c t r i c  propulsion systems 
i n  proper perspective, consideration must f i n a l l y  
be given t o  one of i t s  major unknowns - spec i f ic  
powerplant mass. 

tween 4 and 10 kg/kw; however, it must be reca l led  
t h a t  no such system has ever been b u i l t .  

The nominal value of 7 kg/kw used . here i s  based on current estimates14 t h a t  range be- 

Figure 10 shows how the  r e l a t ion  of gross 
weight t o  mission time i s  e f fec ted  by spec i f ic  pow- 
e rp lan t  mass. A t  t he  very long mission times, 
around 600 days, the  impact of t h i s  parameter i s  
r e l a t i v e l y  s m a l l  but becomes more important as  the  
mission time i s  reduced. The primary effect ,  how- 
ever, i s  t o  reduce the  apparent minimum mission 
time . 

Comparison with Other Systems 

One method of avoiding the long-duration s p i r a l  
and Van Allen b e l t  hazard i s  t o  accomplish the  Earth 
escape phase with a high-thrust stage added t o  the 
bas ic  e l e c t r i c  system. Use of a nuclear rocket f o r  
t h i s  purpose corresponds t o  the combined high- and 
low-thrust system studied by Levoy15 and Edelbaum. 
For t h i s  type of vehicle, the  optimum amount of 
high-thrust  a s s i s t  i s  determined on the bas i s  of 
minimum gross weight ( f o r  both systems added to- 
ge ther )  a s  shown i n  f igu re  ll f o r  the  mission time 
of 400 days. In  most cases t h i s  boost i s  su f f i c i en t  
t o  in te rcept  Mars without any added propulsion. I f  
t he  remaining propulsive phases (Mars a r r i v a l  and 
departure) are supplied by the  e l e c t r i c  rocket, the  
weights shown i n  f igure  1 2  r e su l t .  Also shown here 
a re  the a l l - e l e c t r i c  system discussed previously and 
an a l l -nuc lear  system, a l l  f o r  the same type of mis- 
sion p ro f i l e  with a = 7 kg/kw. 

A comparison of t he  three  systems shows t h a t  
t h e  combined system gives lower weights over t he  en- 
t i r e  range of mission times considered, with a much 
l a rge r  advantage a t  the  shorter mission times. Be- 
yond about 450 days, however, there does not appear 
t o  be a su f f i c i en t  weight saving t o  warrant t he  com- 
p l ica t ion  of an added nuclear stage. Below 450 days, 
the  a l l -nuc lear  system surpasses the  e l e c t r i c  sys- 
tem, which, however, occurs i n  an area of grea t  su- 
pe r io r i ty  f o r  t he  combined system over both compet- 
ing systems. 

I n  addition t o  the  weight saving shown f o r  the  
combined system, there  are a l so  the associated re -  
ductions i n  power requirements shown i n  f igure  13. 
A t yp ica l  case (s = 550 days) shows a reduction 
from 5 t o  1.8 Mw with an even l a rge r  saving possible 
a t  t he  shor te r  mission times. 

Concludina Remarks 

This paper has estimated i n i t i a l  gross weights 
f o r  a number of mission p ro f i l e s  f o r  a seven man 
Mars mission. A nominal prof i le ,  with four sp i r a l -  
type propulsion phases, can achieve weight as low a s  
a mill ion pounds i f  the  mission time i s  allowed t o  
increase t o  650 days. Use of an unmanned b e l t  t r a -  
versa l  can reduce these weights t o  about 500,000 l b  
while saving about 40 days on the mission time. The 
introduction of atmospheric braking a t  Earth r e tu rn  
can give fu r the r  reductions t o  about 300,000 l b  a t  
600 days while a l so  reducing minimum mission time 
from 500 t o  400 days. Finally,  fu r the r  but smaller 
reductions a re  possible by using two-phase prof i les ;  
however, these do not appear worth the  concomitant 
r i sk  and complexity. 

Comparisons with the all-nuclear rocket and 
combined systems chow t h a t  the combined system i s  
superior over a wide range of mission times a t  a 
specific powerplant mass of 7 kg/kw. 
system becomes equivalent t o  the coEbined system a t  
the longer mission times and i s  superior t o  the  
nuclear-rocket system. For the  shor te r  mission 
times, however, t he  combined system i s  f a r  superior 
t o  t h e  others.  

The e l e c t r i c  

Although t h i s  study ind ica tes  t h a t  the combined 
nuclear- and e lec t r ic - rocke t  system i s  superior f o r  
t h i s  mission, it m q  a l so  be sa id  t h a t  the a l l -  
e l ec t r i c  system i s  competitive, pa r t i cu la r ly  a t  the  
longer mission times. Consequently, i f  e l e c t r i c  

- 3 -  



systems are d e f i n i t e l y  competitive f o r  t h e  Mars mis- 
sion, it i s  even more cer ta in  t h a t  they w i l l  be su- 
per ior  f o r  more d i f f i c u l t  ventures. 

Description 

Two manned landing vehicles  
Two equipment landing vehicles  
Tanker 
S c i e n t i f i c  equipment and probes 
Miscellaneous 
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Table I. - C r e w  Cabin Weight Estimates 

(No Radiation Shielding Included) 

Weight, 
lb 

Description 

Structure, meteorite protec- 

Furnishings 
Centrifuge, 1/3 g 
Repair, medical, and recrea- 

Fixed l i fe-support  weighta 
Continnencv 

t ion,  and thermal control  

t i o n a l  f a c i l i t i e s  

Total  

"he t i m e  dependent p a r t  of 

23,000 

2,000 
1,000 
2,000 

3,500 
500 

32,000 

he l i f e  

~- 

support system weight has been as- 
sumed t o  increase a t  a r a t e  of 45.5 
lb/day f o r  t h e  seven man crew. 

I Tota l  1 84,000 I 

Table 111. - Assumed Frequency of Solar 

F l a r e s  (1.0 Percent Risk of 

Exceeding Each Type) 

Exposure time, Small type, Large type, I days I l / y r  I 1/4 Y' 

160 t o  210 
210 t o  .wo 
300 t o  462 
462 t o  630 
630 t o  654 
654 t o  800 
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Figure 1. - Conceptual design of electric propulsion system for manned Mars mission. 
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Figure 2. - Typical crew cabin configuration for seven man Mars mission. 
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Figure 4. - Nominal mission profile for manned Mars mission using 
electric propulsion. 
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Figure 5. - Performance using nominal mission 
profile for seven man M a r s  mission. Wait 
time, 40 days; specific powerplant mass, 
7 kglkw. 
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Figure 6. - Comparison between manned and unmanned belt traversal 
for seven man Mars  mission. Wait time, 40 days; specific power- 
plant mass, 7 kglkw. 
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Figure 7. - Effect of thrustor type and efficiency for seven man Mars 
mission. Unmanned belt traversal. Wait time, 48 days; specific 
powerplant mass, 7 kglkw. 
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Figure 8. - Effect of atmospheric braking for seven man Mars mission. 
All-elxtric s;/stem: unmanned belt traversal. Wait time, 40 days; 
specific powerplant mass, 7 kglkw. 
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Figure 9. - Comparison of single- and two-phase mission profiles 
for seven man Mars mission. Unmanned belt traversal. Wait 
time, 40 days; specific powerplant mass, 7 kglkw; entry  velocity, 
52, OOO ftlsec. 
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Figure 10. - Effect of specific powerplant mass for seven man Mars mission. 
Unmanned belt traversal; chemical braking to 52,000 ftlsec. Wait time, 
40 days. 

Earth escape 

One-way 
Ear th  -Mars 
t rans fe r  

- 



l . r a 1 6  

1.6 ! ' \ 
\ 
\ 

d I I I I I 
350 400 450 500 5% 600 

Mission time, Tw days 

Figure 12. - Comparison of all-electric. all-nuclear, and 
combined rocket systems for seven man Mars mission. 
Wait time, 40 days; specific :owerclant mass, 1 kgfkw; 
en t ry  velocity, 52, WO ftlsec. 
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Figure 13. - Comparison of total Yower requirements for al l -  
electric and combined systems for seven man Mars mission. 
Wait time 40 days, si:ectfic powerplant mass, 1 kglkw entry 
velocity. 52. OOO Rlsec; nuclear rocket si.ectfic impulse. 
850 sec. 


